Error-Adjusted Momentum Redux
James Picerno of Capital Spectator recently did a good review of Error-Adjusted Momentum in his post “A Momentum-Based Trading Signal with Strategic Value“. The Capital Spectator blog is rich with great content covering a diverse range of subjects from economics to asset allocation and investment strategy. Picerno has published numerous books, but my favorite is Dynamic Asset Allocation which has a handy place on my bookshelf. Dynamic Asset Allocation is a good review of the case for a tactical approach to portfolio management.
To add some new ideas on the error-adjusted momentum strategy, I would suggest readers experiment with multiple time windows (ie the averaging period) and error lookbacks as well as data points with different frequencies from intraday,daily or even weekly and aggregate their signals to increase robustness. Risk or volatility can be substituted or also used in place of the error adjustment. The general concept of standardizing returns in some way to account for changing variance/error creates an effective non-linear filter that is a superior substitute to an adaptive moving average. In contrast, a typical adaptive moving average approach attempts to vary the lookback window (make the moving average faster or slower) as a function of some indicator. Academic studies on moving averages show that this type of approach demonstrates little success with a wide range of time series data outside of financial markets.
I have personally tried virtually every method I could find with an adaptive moving average framework and have had no material success. Part of the problem is that shifting to shorter-term moving averages increases standard error because you are using less data. Furthermore, by ignoring older data and shifting to a shorter window, you assume that there is no memory from changes in the dynamics of the time series. The success of volatility forecasting methods demonstrate in part that the influence of changes in the time series decay over time rather than all at once. The error-adjusted momentum approach is a nonlinear filter, and in general this class of methods tend to work better in my experience with financial time series. This particular filter permits a sufficient lookback window for averaging to achieve a good estimate (from a statistical sample size perspective) and retains information from dynamics that have evolved over time. The key is that it simultaneously manages to emphasize/de-emphasize portions of the data set based on the observed error (or some other metric). Substituting a weighted moving average in place of a simple moving average in the filter can also better capture the path dependence of changes in error.
As with any approach there are many different ways to apply the same concept, and readers are encouraged to experiment. The caveat is that it is better to use multiple approaches in an ensemble than to select the very best approach– the more things we try via experimentation (especially if there is no logical theory/hypothesis attached to it), the greater the risk of data-mining. A favorite quote from one of good blogs that I follow- Volatility Made Simple– says it best: “the concepts being exploited are much more important than the specific parameters chosen. All sets of parameters will, over the long-term, rise or fall together based on the success or failure of the core concept.”
Anything with moving average cross-over type approaches brings to mind the regularly repeated von Neumann (per Fermi anyway) quote: “With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.” It is scarily easy to generate spuriously good performance both in sample and “out of sample” by doing what we naturally do (and need to do): test a wide variety of models each with a couple of free parameters.
Take a look at DJIA price data since 1900 or earlier. Adjusting the trend using historical volatility just doesn’t improve the performance versus a simple 200 day moving average. Please try others, but so far the added complexity just doesn’t make a difference.