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HONEY, I SHRUNK THE SAMPLE COVARIANCE MATRIX

ince the seminal work of Markowitz [1952],
mean-variance optimization has been the most
rigorous way to pick stocks. The two fundamen-
tal ingredients are the expected (excess) return for
each stock, which represents the portfolio manager’s abil-
ity to forecast future price movements, and the covariance
matrix of stock returns, which represents risk control.

To further specify the problem, in the real world
most asset managers are not allowed to sell short, and in
the modern world they are typically measured against the
benchmark of an equity market index with fixed (or
infrequently rebalanced) weights. There is fast and accu-
rate quadratic optimization software that can solve this
problem—provided it is fed the right inputs.

Estimating the covariance matrix of stock returns
has always been one of the stickiest points. The standard
statistical approach is to gather a history of past stock
returns and compute their sample covariance matrix. Unfor-
tunately, this creates problems that are well documented
(see Jobson and Korkie [1980]).

To put it as simply as possible, when there are many
stocks under consideration, especially compared to the
number of historical return observations available (as is
the usual case), the sample covariance matrix is esti-
mated with a lot of error. This means the most extreme
coefficients in such an estimated matrix tend to take on
extreme values, not because they are correct but because
they are subject to an extreme amount of error. Invari-
ably the mean-variance optimization software will latch
onto the extremes, and place its biggest bets on the coef-
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ficients that are the most unreliable.

Michaud [1989] calls this phenomenon “error-max-
imization.” It implies that managers’ realized track records
will underrepresent their true stock-picking abilities,
which is clearly the last thing they would want.

Adding to this problem, some companies have pro-
posed proprietary methods to generate covariance matri-
ces that are advertised as better suited to mean-variance
optimization than the sample covariance matrix. The
drawbacks are that any manager using them establishes a
costly and indefinite dependence on an external entity that
does not share in any downside risk, and that the propri-
etary methods are not open to independent inspection and
verification, so one can never be sure what is really going
on behind the curtain.

We propose a new formula for estimating the covari-
ance matrix of stock returns that is useful to replace the
sample covariance matrix in any mean-variance opti-
mization application, and it is absolutely free of charge and
available to all. The method recognizes that the coefficients
in the sample covariance matrix that are extremely high
tend to be estimated with a lot of positive error, and
therefore need to be pulled downward to compensate for
that. Similarly, the method compensates for the negative
error that tends to be embedded in extremely low esti-
mated coefficients by pulling them upward. We call this
the shrinkage of the extremes toward the center. If prop-
erly implemented, this shrinkage would clearly fix the
problem of the sample covariance matrix.

The key questions are toward what target to shrink,
and how intensely? Our contributions are: 1) to provide
a rigorous statistical answer to both these questions; 2) to
describe this so the reader can decide for himself or her-
selt whether it makes sense; 3) to supply computer code
that implements the resulting mathematical formula; and
finally 4) to show that this approach produces significant
improvements with actual stock return data.

Shrinkage 1s hardly a revolutionary concept in statis-
tics, although it certainly was when it was first intro-
duced by Stein [1955]. An excellent non-technical primer
on shrinkage using real-life examples of baseball batting
averages appears in Efron and Morris [1977]. That this idea
has not yet percolated to a field where it would be most
useful, portfolio management, is testimony to the Chinese
walls between theoretical and applied disciplines whose
adherents would benefit from talking to each other more.
We endeavor to knock down these walls.

Early attempts to use shrinkage in portfolio selection
were made by Frost and Savarino [1986] and Jorion [1986],
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but their particular shrinkage techniques were unable to cope
with more stocks on the menu than in the historical return
observations, as is very often the case. More recently, Jagan-
nathan and Ma [2003] show that mean-variance optimiz-
ers already implicitly apply some form of shrinkage to the
sample covariance matrix when short sales are ruled out, and
that this is generally beneficial in terms of improving the sta-
bility of weights. All the more reason then to do this explic-
itly, so that the optimal shrinkage intensity can be applied.

We lay out much of the foundation for our work
elsewhere (see Ledoit and Wolf [2003, 2004]). These are
largely theoretical and general interest articles; here we
focus specifically on how to employ the technology to add
value to active portfolio management.

We first provide a formal description of the portfo-
lio optimization problem in order to provide a base for our
exposition. We then look at the out-of-sample perfor-
mance of the estimator, using historical stock return data.

DESCRIPTION OF THE PROBLEM

We study the typical case for equity portfolios. The
benchmark is a weighted index of a large number N of
individual stocks, such as a value-weighted index. The uni-
verse of stocks from which the portfolio manager selects
includes all these stocks. Excess returns are defined rela-
tive to the chosen benchmark.!

The notation is as follows:

g
|

= vector of benchmark weights for the
universe of N stocks;

x = vector of active weights;

wp = wy + x = vector of portfolio weights;
1y = vector of stock returns;

= E(y) = vector of expected stock returns;
a = pu— uf g = vector of expected stock excess returns;
and

2 = covariance matrix of stock returns.

We can write expected returns and variances in
vector/matrix notation as:

py = @ gt = expected return on benchmark;
0123 = w’BZwB = variance of benchmark return;
pp = @ pit = expected return on portfolio;
o5 = w/, Zw, = variance of portfolio return;
= 2'p = expected excess return on portfolio;
and
0}, = 2’Zx = tracking error variance.
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The portfolio selection problem is subject to the
constraint that the portfolio be fully invested; that is, the
portfolio weights 2, must add up to unity. With 1 denot-
ing a conforming vector of ones, this can be written as
w/, 1 = 1. Because the benchmark weights also add to
unity, the vector of portfolio deviations must add to zero,
or 7 1 = 0. Therefore, a manager’s portfolio can be
viewed as a position in the benchmark plus an active port-
folio. The active portfolio is a long-short portfolio that
expresses the views of the manager.

Two immediate implications are:

Hp = pg T py

2= 2 ’ 2
o, = 0p + 2w X + o),

While positions of the active portfolio are both pos-
itive and negative, the manager does not have complete

freedom. None of the portfolio weights w, can be neg-

ative, or w, = 0, due to the long-only colilstraint. The
resulting constraint & 2 —w, expresses the limited freedom
of the manager. Grinold and Kahn [2000, Chapter 15|
illustrate how this limitation can negatively aftect the per-
formance of the managed portfolio, especially when the
benchmark is a value-weighted index and when N is
large. Another constraint is that the total position in any
given stock cannot exceed a certain value, such as 10%.
If this upper bound is denoted by ¢, the resulting constraint
on the weights of the active portfolio is & < 1 — wp.

We formalize the optimization problem of the man-
ager as follows:?

Minimize: z'Xx (1)

such that ¥’av 2 g
21=0

/

x Z—wB
xScl—wB

Here g is the manager’s target gain (i.e., expected
excess return) relative to the benchmark. A typical num-
ber is 300 basis points (annualized). The manager chooses
¢ and the upper limit ¢ and also knows the current vec-
tor of benchmark weights wj. The manager is now left
to provide estimates for «, the vector of expected stock
excess returns, and for X, the covariance matrix of stock
returns. In a final step, all the inputs are fed into a quadratic
optimization software that will compute x, the optimal
weights of the active portfolio.
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We want to provide the manager with a good esti-
mator of X. We do not address how to estimate cv.

SHRINKAGE ESTIMATOR
OF THE COVARIANCE MATRIX

The shrinkage estimator for X starts with the sam-
ple covariance matrix S. Its advantages are ease of com-
putation and unbiasedness (i.e., its expected value is equal
to the true covariance matrix). Its main disadvantage is
that it is subject to a lot of estimation error when there
are the same number of or even fewer data points than
there are individual stocks; this is the typical case in finan-
cial applications.

Alternatively, one might consider an estimator with
a lot of structure, like the single-factor model of Sharpe
[1963]. Such estimators have relatively little estimation
error but, on the other hand, they tend to be misspecified
and can be severely biased. In one way or another, all suc-
cessful risk models find a compromise between the sam-
ple covariance matrix and a highly structured estimator.

The industry standard is multifactor models. The
idea is to incorporate multiple factors instead of just the
single factor of Sharpe [1963], so the models become more
flexible and their bias is reduced—but estimation error
increases. Finding the optimal trade-oft by deciding on the
nature and the number of the factors included in the
model is as much an art as it is a science.

One approach is to use a combination of industry fac-
tors and risk indexes, with factors on the order of 50. An
example is Barra’s U.S. equity model. Another approach
1s to use statistical factors, such as principal components, with
factors on the order of 5. One commercial vendor ofter-
ing risk models based on statistical factors is APT.

Our philosophy is difterent. Consider the sample
covariance matrix S and a highly structured estimator,
denoted by F. We find a compromise between the two by
computing a convex linear combination OF + (1 — §)S,
where 0 is a number between 0 and 1. This technique is
called shrinkage, as the sample covariance matrix is shrunk
toward the structured estimator. The number §is referred
to as the shrinkage constant. Intuitively, it measures the
weight that is given to the structured estimator.’

Shrinkage estimators have a long history in statistics.
The beauty of the principle is that by properly combin-
ing two extreme estimators one can obtain a compromise
estimator that performs better than either extreme. To draw
a rough analogy: Most people would prefer the compro-
mise of one bottle of Bordeaux and one steak to either

SUMMER 2004

Itisillegal to reproduce thisarticle in any format. Copyright 2004.



extreme of two bottles of Bordeaux (and no steak) or two
steaks (and no Bordeaux).

Any shrinkage estimator has three ingredients: an
estimator with no structure, an estimator with a lot of
structure, and a shrinkage constant. The estimator with-
out structure is generally quite obvious, given the con-
text. For us it is the sample covariance matrix. Less obvious
is the choice of the structured estimator, or shrinkage tar-
get, and the shrinkage constant.

Shrinkage Target

The shrinkage target should fulfill two requirements
at the same time; it should involve only a small number
of free parameters (that is, a lot of structure), but it should
also reflect important characteristics of the unknown
quantity to be estimated. In Ledoit and Wolf [2003] we
suggest the single-factor matrix of Sharpe [1963] as the
shrinkage target. Here we make a different suggestion: the
constant-correlation model.

In our experience, the constant-correlation model
gives comparable performance but is easier to imple-
ment. The model says that all the (pairwise) correlations
are identical.*

Estimation of the model is straightforward. The
average of all the sample correlations is the estimator of
the common constant correlation. This number together
with the vector of sample variances implies our shrink-
age target, denoted by F henceforth. A formal descrip-
tion of the shrinkage target is provided in Appendix A;
see in particular Equation (A).

Shrinkage Constant

The obvious practical problem is which value to
choose for the shrinkage constant. Any choice of d between
0 and 1 would yield a compromise between S and F, but
this results in infinitely many possibilities. Intuitively, there
is an optimal shrinkage constant, the one that minimizes
the expected distance between the shrinkage estimator and
the true covariance matrix. Call this number 0".

Appendix B derives a formula for estimating 6°. The
estimated optimal shrinkage constant is denoted §*; see
Equation (B-2) in Appendix B. Our operational shrink-
age estimator of the covariance matrix X is now:

Sshrink = 0 F + (1- 3*)5 2
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EMPIRICAL STUDY

We describe the out-of-sample performance of our
shrinkage estimator using historical stock market data.
Datastream provides monthly U.S. stock data. We use
these data to construct several value-weighted indexes to
serve as benchmarks. Starting in February 1983, the
methodology is as follows.

At the beginning of each month, we select the N
largest stocks (with a ten-year history) as measured by
their market value. The market values of the stocks define
their index weights. At the end of the month, we observe
the (real) returns of the individual stocks, and, given their
weights, compute the return on the index. This prescrip-
tion is repeated every month through December 2002
(yielding a total of 239 monthly returns). Thus, the con-
stituent list and the index weights are constantly updated.

For benchmark size N, we use N = 30, 50, 100, 225,
and 500. This range covers such important benchmarks
as the DJIA, XETRA DAX, DJ STOXX 50, FTSE 100,
Nasdaqg-100, Nikkei 225, and S&P 500. Summary statis-
tics of the various benchmark returns are provided in
Exhibit 1. All numbers are annualized.

To mimic performance of a skilled active manager,
we first construct raw forecasts of the expected excess
returns by adding random noise to the realized excess
returns. In a second step, these raw forecasts are transformed
into refined forecasts ¢t that are fed to the quadratic opti-
mizer. This is done so that the unconstrained annualized
ex ante information ratio (IR) is approximately equal to
1.5, independently of the value of the benchmark size N.
The unconstrained IR could be attained by a manager
who did not face any lower or upper bound constraints
on the weight vector x and who knew the exact nature
of the covariance matrix X of stock returns.

The details of the forecast construction are described
in Appendix C.

Evaluation Algorithm

A risk model is evaluated by its out-of-sample
performance.

* At the beginning of each month, feed to the
quadratic optimizer: the benchmark weights w,,
the forecasted expected excess returns ¢, the esti-
mated covariance matrix i, the desired gain g,
and an upper bound of ¢ = 0.1 on the total weight
of any stock.
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ExHIBIT 1
Summary Statistics for Benchmark Returns

N =30 N =50 N =100 N =225 N =500
Mean 13.63 13.50 13.29 13.45 13.42
Standard Deviation 15.12 15.02 14.76 14.56 14.52

* To compute an estimate %, we use the last T =
60 monthly returns of the current constituent list
of stocks.

e The quadratic optimizer computes a weight vec-
tor x.

¢ At the end of the month, the realized excess
return is given by e = x”y, where y is the vector
of stock returns for the month.

* The out-of-sample period ranges from February
1983 through December 2002, so we have a total
of 239 monthly realized excess returns.

* From the excess returns we compute the (annual-
ized) ex post information ratio as V12e/ s,, where
€ is the sample average of the excess returns, and
s, 1s the sample standard deviation of the excess
returns.

 Since the results depend on the monthly forecasts
&, which are random, we repeat this process 50
times and then report mean summary statistics.

¢ For the (annualized) gain, we use 300 basis points.

Besides the shrinkage estimator, we include the
sample covariance matrix, the shrinkage estimator of
Ledoit and Wolf [2003], and a multifactor risk model based
on statistical factors in our study.

The sample covariance matrix is widely known and
very easy to compute. According to Jagannathan and Ma
[2003], a portfolio manager facing a long-only constraint
might hope it yields reasonable performance.

Multifactor models are the industry standard for
estimation of the covariance matrix. Statistical factors, as
opposed to macroeconomic and fundamental factors,
have the advantage that they can be computed from past
stock returns alone. The statistical factors we use are the
first five principal components, as in Connor and Koraj-
czyk [1993] and Connor [1995].°6

Mean summary statistics for the realized excess
returns are presented in Exhibit 2. Sample denotes the
sample covariance matrix; shrink-CC denotes our shrink-
age estimator; shrink-SF denotes the shrinkage estimator
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of Ledoit and Wolf [2003]; and PC-5 denotes the multi-
factor estimator based on the first five principal compo-
nents. The results are mean summaries over 50 repetitions.
All numbers are annualized.

A comparison of the shrinkage estimator we pro-
pose (shrink-CC) to the sample covariance matrix (sam-
ple) indicates that:

* In all scenarios, the shrinkage estimator yields the
highest (average) information ratio.

* In most scenarios, the shrinkage estimator yields
the highest (average) mean excess return.

 In all scenarios, the shrinkage estimator yields the
lowest (average) standard deviation of excess
return.

e The (average) information ratio declines as the
benchmark size N increases.’

Exhibit 3 shows boxplots of the realized informa-
tion ratios for the sample covariance matrix and the
shrinkage estimator proposed here over the 50 repetitions
for the various scenarios. For any given index size N, the
first boxplot corresponds to the sample covariance matrix,
and the second one to the shrinkage estimator in Equa-
tion (2). The message is identical to that in Exhibit 2: 1)
shrinkage improves on the sample covariance matrix; and
2) realized information ratios tend to drop as N increases.
The plots also show considerable variation in the realized
information ratios. In addition to good forecasting skill
and a good risk model, the successful active manager can
benefit from a bit of good luck.

Shrink-CC does somewhat better than shrink-SF for
N <100 but somewhat worse for N = 225. Shrink-CC
does somewhat better than PC-5 for N <50, and is com-
parable to PC-5 for N = 100.

Exhibit 4 presents mean summary statistics on the
average monthly turnover. Turnover is defined as fotal
turnover following Grinold and Kahn [2000, Chapter 16].
Note that this means updating the entire portfolio, not just
the active portfolio. A part of the turnover, therefore, is
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EXHIBIT 2

Mean Summary Statistics for Excess Returns
with Gain = 300 bp

IR Mean SD
N =30
Sample 0.97 2.18 2.26
Shrink-CC 1.24 2.50 2.03
Shrink-SF 1.18 2.39 2.04
PC-5 1.17 2.45 2.10
N =50
Sample 0.79 1.92 2.44
Shrink-CC 1.14 2.21 1.95
Shrink-SF 1.08 2.13 1.98
PC-5 1.11 2.18 1.96
N =100
Sample 0.59 1.71 2.93
Shrink-CC 0.91 1.87 2.06
Shrink-SF 0.89 1.86 2.10
PC-5 0.91 1.87 2.07
N =225
Sample 0.37 2.37 6.45
Shrink-CC 0.54 2.53 4.97
Shrink-SF 0.57 2.37 4.30
PC-5 0.55 2.42 4.46
N =500
Sample 0.20 1.92 8.53
Shrink-CC 0.30 1.82 5.77
Shrink-SF 0.33 1.74 5.13
PC-5 0.31 1.59 5.05

due to the constituent list of the benchmark and their
weights, both of which change over time.

In general, the turnover is too high to be attractive
for an active manager—but we made no effort to limit
turnover, and a constraint on this could easily be added
to the quadratic optimization in problem (1). The impor-
tant message to take away from Exhibit 4 is that the sam-
ple covariance matrix always results in the highest turnover.
The other three methods are comparable to one another.

More on Constraints

Many active managers face constraints besides the
long-only constraint and an upper bound on the weight
of any given stock. Examples are market cap-neutral con-
straints, turnover constraints, and dividend yield neutral-
ity with respect to the benchmark. Adding further
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constraints generally reduces the ex post information
ratio—see Clarke, de Silva, and Thorley [2002]—but the
manager will still benefit from a superior risk model.

It is by now well understood that tracking error-efti-
cient portfolios are not mean-variance efficient. The
tracking error efficient frontier is shifted below and to the
right of the mean-variance efficient frontier; see Roll
[1992], Wilcox [1994], and Scherer [2002, Chapter 6].
Jorion [2003] shows that adding a constraint on the total
portfolio variance, 0, = W Zw,, to the quadratic opti-
mization in problem (1) improved the mean-variance
efficiency of the managed portfolio.®

Obviously, the additional constraint requires an esti-
mate of X in practice, so a superior risk model will again
be beneficial to the manager.

CONCLUSION

We propose a risk model that dominates the tradi-
tional one, the sample covariance matrix, for mean-vari-
ance optimization in the context of active portfolio
management. Given the well-documented flaws of the
sample covariance matrix, nobody should be using it now
that an enhanced alternative is available. Using the simple
modification we propose substantially increases the realized
information ratio of the portfolio manager. If an annual
expected excess return of 300 basis points over the bench-
mark is specified, a typical increase is on the order of 50%.

Computer code in the Matlab programming lan-
guage implementing this improved estimator is freely
downloadable.” Portfolio management firms that are
sophisticated enough to use mean-variance optimization
software would have the expertise required to implement
our simple formulas in any computer language.

All types of portfolio optimization procedures, even
advanced ones such as the resampled efficient frontier as
in Michaud [1998] would benefit from shrinking the
sample covariance matrix. The intuitive justification for
this statistical transformation is prudence: not betting the
ranch on noisy coefficients that are too extreme. We
hope the profession can find value in our proposal.

APPENDIX A

Formula for Shrinkage Target

Lety,, 1 <i< N, 1<t<T,denote the return on stock 7
during period ¢. Our analysis assumes stock returns are indepen-
dent and identically distributed (iid) over time and have finite fourth
moments. The sample average of the returns of stock ¢ is given by
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ExXHIBIT 3
Realized Information Ratios with Gain = 300 bp
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EXHIBIT 4

Mean Summary Statistics for Average Monthly Turnover

N =30 N =50 N =100 N =225 N =500
Sample 0.39 0.50 0.66 0.80 0.85
Shrink-CC 0.33 0.39 0.50 0.65 0.75
Shrink-SF 0.34 0.41 0.52 0.66 0.76
PC-5 0.33 0.39 0.50 0.64 0.73
T = T4 Zz;l Yi. Let X denote the population (or true) covari- ~ 2 NZL N
ance matrix, and let S denote the sample covariance matrix. Typ- r= m Zl .ZH Tij
=1 j=i

ical entries of the matrices £ and S are denoted by 0;;and s,
respectively.
The population and sample correlations between the returns
on stocks 7 and j are given by
Oij

0 = —2—
and
The average population and sample correlations are given by
9 N-1 N
0= v v Qij
EEEpIPH
and
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Define the population constant-correlation matrix @ by
means of the population variances and the average population
correlation:

Gii = 04
and
bij = 01/0ii05;
Correspondingly, define the sample constant-correlation matrix F by
means of the sample variances and the average sample correlation:
Jii = i
and

fij = 7\/5i555 (A)
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APPENDIX B
Formula for Shrinkage Intensity

We have to choose the objective according to which the
shrinkage intensity §1is optimal. All established shrinkage estimators
from finite-sample statistical decision theory (also from Frost and
Savarino [1986]) break down when N 2> T because their loss func-
tions involve the inverse of the covariance matrix. Instead, we pro-
pose a loss function that does not depend on this inverse and is very
intuitive; it is a quadratic measure of distance between the true and
the estimated covariance matrices based on the Frobenius norm.

The Frobenius norm of the N X N symmetric matrix Z with

entries (2,); i _ 1 --an 18 defined by

N N
1ZIP=3">"=

i=1 j=1

By considering the Frobenius norm of the difference between the
shrinkage estimator and the true covariance matrix, we arrive at
the quadratic loss function:

L) =6 F+(1—-06)S -3

The goal is to find the shrinkage constant d that minimizes
the expected value of this loss, that is, the risk:

=E([6 F+(1-0)S-%|?) @1

Under the assumption that N is fixed while T tends to infinity, in
Ledoit and Wolf [2003] we prove that the optimal value 6" behaves
asymptotically like a constant over T (up to higher-order terms).
This constant, called k, can be written as

T—p
5

where T denotes the sum of asymptotic variances of the entries of
the sample covariance matrix scaled by VT ':

R =

T = Zf\;l Zjvzl AsyVar [\/Ts”}

Similarly, p denotes the sum of asymptotic covariances of the
entries of the shrinkage target with the entries of the sample
covariance matrix scaled by VT':

p= Zf\; Zjv=1 AsyCov [\/Tfija \/TSU]

Finally, v measures the misspecification of the (population)
shrinkage target:

Y= Zz 12] (@i — 0i;)*
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If K were known, we could use /T as the shrinkage inten-
sity in practice. Unfortunately, & is unknown, so we find a con-
sistent estimator for k. This is done by finding consistent estimators
for the three ingredients T, p, and 7.

First, a consistent estimator for T is

N N
=2
i=1 j=1

with

T

. 1 _ _

iy =7 D AW — 5 W — 35) — s}
t=1

This result is proven by Ledoit and Wolf [2003].
Second, a consistent estimator for p is a bit tedious to write
but quite straightforward to implement. By definition:

N N

Z Z AsyCov [\/Tfij, \/Ts”]

i=1 j=1

Z AsyVar [ Ts“}

>
I

N N
Z Z AsyCov[ TT\/555;, \/T‘SU}
i=1 j=1,

On the diagonal, we know from Ledoit and Wolf [2003]
again that:

{(yae — 9:.)* — Sii}2

E

AsyVar [\/Ts“} =y = %

t=1

On the off-diagonal, we have:

AsyCov [\/Tf, /5ii57 \/TSZ-]-:|

Since the estimation error in 7is asymptotically negligible and by
use of the delta method, any term

AsyCov [\/Tf,/siisjj, \/Tsij}
can be consistently estimated by

(1 / Zﬂ ASyCOV [\/Tsi,;, \/T(S”] + 1/ ::l ASyCOV [ﬁé”, ﬁ&w])
i JJ

Standard theory implies that a consistent estimator for Asy-
Cov \/_s ] is given by

N3
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T
nz]: Z{ Yit — _Sii}x
t:1
{(@ie = §i)(Yje = U5.) — 545}

and that, analogo%, a consistent estimator for
AsyCov [ﬁsii’ Tsi,/.] is given by:

3 1
Vjji5 = T Z{ Yjt —

t=1

{(ir — i) (e — U5.) — i}

—Sjj} X

Collecting terms now yields a consistent estimator for p:

W+

Sii 3 Sii
Z B (\/ i+ [ 79]‘]‘@')
J=Lj# S 57

Third, a consistent estimator for 7 is

>
I
7=
>

Mz‘i
=

,_.

i=

N

Mz

fl] Sm
j=1

I
—

i

This result follows because f and 5;; are consistent esti-
mators of (j) and 0, , respectively.
Putting the pieces together yields a consistent estimator for :

=

— P

gl

Finally, the estimated shrinkage intensity we propose for use

I%:

in practice is:

A i
* = i — B-2
0 max{(hmm{TJ}} B-2)

Although it is very unlikely, in principle it can happen in a finite
sample that 4/ T < 0, or that 5/T > 1, in which case we simply
truncate it at O or at 1, respectively.

APPENDIX C

Forecasting Expected Excess Returns

We want to mimic a skilled active manager. To do this, we
rely on hindsight and the forecast principles laid out in Grinold and
Kahn [2000, Chapters 6 and 10].

Let e;, denote the excess return of stock 4 during period ¢, that
is, the return on the stock minus the benchmark return. In a first step,
we generate raw forecasts by adding noise to the realized excess returns:
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raw;, = € Uy

The noise terms u,, are normally distributed with mean zero
and are independent of each other both cross-sectionally and over
time. For a given stock, the ex ante correlation between e, and
u,, over time is known as the information coefficient (IC). In prin-
cipal, the IC could depend on 7 but, as is common, we choose a
coeflicient constant across stocks.

What is an appropriate value for the IC? In the absence of
constraints on the active manager (apart from being fully invested),
the well-known fundamental law of active management states
that the ex ante information ratio (IR) of the manager is determined

by the IC and the breadth of the strategy:
R ~ IC VBreadth

The breadth term measures the number of independent
active bets the manager makes in one year. Since in our study the
portfolio will be updated every month and, by construction, the
forecasts are independent of each other, we have

Breadth = 12N

Therefore, the IC is determined by the size of the bench-
mark, N, and the desired ex ante information ratio, IR, which we
fix at 1.5. Putting the various pieces together yields:

IC = 1.5/VI12N

To give three examples, N = 30 yields IC = 0.0791, N =
100 yields IC = 0.0433, and N = 500 yields IC = 0.0194.

In a second step, the raw forecasts for each stock are con-
verted to scores by subtracting their sample mean,7aw, , and divid-

ing by their sample standard deviation, s,

raw; — raw;.
scorep = ——————————
Sraw,i

In a third and final step, the scores are transformed into refined
forecasts using the relationship:

Alpha = Volatility X IC X Score

Here, volatility refers to the excess return of a given stock. We esti-
mate this by the sample standard deviation of the realized excess
returns e,, over time. Denoting this standard deviation by s, , the
formula for the final step is:

e,i’

A

Q= 5,,; X IC X score.
e, it

it

Note that the ex post information ratio of an active man-
ager will in general not be equal to the ex ante value of 1.5. This
is because 1) the manager is bound by constraints (such as a long-
only constraint and upper limits on the portfolio weight of each
stock); 2) the manager has to estimate X in practice; 3) with the
randomness of the u,,, the ex post correlation between e, and u,,
over time will not be equal to IC.
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The first two facts have a negative effect on the ex post
information ratio. The third fact can go either way. It is therefore
possible in practice, although not very likely, that the ex post infor-
mation ratio is higher than the ex ante value of 1.5. To smooth the
inherent randomness in the realized information ratios, we repeat
the forecasting process 50 times and then report mean summaries.

ENDNOTES

"The problem can be generalized to a universe that includes
stocks not in the benchmark. If we want to minimize transaction costs,
however, the more general setting is of limited practical interest.

YJorion [2003] considers the problem of maximizing x’0 sub-
ject to an upper bound on the tracking error variance x"Xx. Gri-
nold and Kahn [2000] consider the problem of maximizing x"ot —
Ax"Zx, where A is a risk aversion constant. These are equivalent prob-
lem formulations, leading to the same frontier in risk-return space.

°In Ledoit and Wolf [2003] we denote the shrinkage con-
stant by o We use the symbol 8 here to avoid confusion with
expected excess returns.

*The constant-correlation model would not be appropriate if
the assets are from different asset classes, such as stocks and bonds. In
such cases, more general models for the shrinkage target are available.

’An additional advantage of our shrinkage estimator is that it
is always positive-definite. When the size of the benchmark N exceeds
the number of past returns used in the estimation process, the sam-
ple covariance matrix S is singular. This would imply that there are
stock portfolios with zero risk. Our shrinkage estimator, however, is
a convex combination of an estimator that is positive-definite (the
shrinkage target F) and an estimator that is positive semidefinite (the
sample covariance matrix S). It is therefore positive-definite.

*Multifactor models based on statistical factors require more
programming effort than our shrinkage estimator. First, one needs
software to extract the factors, such as principal components, from
the data. Second, various time series regressions have to be run to
estimate the factor loadings and residual variances. Third, the var-
ious pieces have to be put together to arrive at the estimator of the
covariance matrix.

’Grinold and Kahn [2000, Chapter 15] explain why this hap-
pens. If Nis very large, a manager is probably ill-advised to actively
invest in all the stocks making up the index. The realized infor-
mation ratio can be improved by, for example, focusing on the 50
or 100 largest stocks in the index and setting the weights of the
remaining stocks equal to zero.

8A related idea appeared first in Wilcox [1994].

“The address is http://www.ledoit.net.
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