Momentum Strategies and Universe Selection

momentum
It is well established that the momentum effect is robust across individual stocks and broad asset classes. However, one of the biggest issues for implementation at the strategy level is to choose a universe for trading. For example, one might choose a broad index such as the S&P500 for an individual stock momentum strategy, but is that the best choice to use to maximize returns? Or if we wanted to build an asset allocation strategy with momentum, which assets should we include/exclude and why? In general, these issues are rarely if ever addressed in either academic papers or in the blogosphere. The consequence is that the choice of universe can artificially inflate results due to data mining (finding the best universe in hindsight prior to presenting the final backtest), or the choice can be too arbitrary and hence sub-optimal from a strategy development standpoint.

There are good reasons to believe that certain asset universes are likely to be superior to others. In a subsequent post, I will attempt to de-compose mathematically what makes a universe particularly well-suited for momentum strategies. But for now, lets discuss some obvious factors that may drive momentum strategy performance: 1) universe heterogeneity/homogeneity: it stands to reason that having an investment universe comprised of six different large cap ETFs will not lead to desirable results because the universe is too similar (homogeneous). In contrast, choosing different sectors or styles or even asset classes should provide opportunities to find good-performing assets when other assets in the universe are not doing as well. 2) the number of assets in the universe: fewer assets will lead to fewer opportunities other things being equal. 3) co-integration/mean-reversion: choosing a universe comprised of co-integrated assets such as say Coke and Pepsi, or Exxon Mobil and the Energy Sector ETF will probably result in negative momentum performance since deviations from a common mean will eventually revert versus continue. This is not a complete description of the factors that drive momentum performance but rather a list that is likely to make logical sense to most investment professionals.

Since there are good reasons to believe that some universes are simply better than others, it makes sense to determine some heuristic for universe selection to improve the performance of momentum strategies. One logical method to determine the universe for trading/backtesting is to try selecting the best universes on a walk-forward basis rather than in hindsight. In other words, we backtest at each time step with a chosen momentum strategy- for example selecting the top asset by 60-day return- and using another window that is much longer- say 756 days or more- to test each possible universe subset from a chosen universe using a performance metric such as CAGR. We would then select the top n/% of universes by their performance, and then apply the momentum strategy to these universes to determine the assets to trade at each re-balance.

A simple example would be to use the nine different sectors in the S&P500 (sector spyders). Perhaps there are sectors that are better suited to a momentum strategy than using all nine? To test this assumption one might choose all universe subsets that are two assets or more (between 2 and 9 in this case) which results in 502 different momentum portfolios. This highlights a key difficulty with this approach- the computational burden grows exponentially as a function of universe size. Suppose we used a 60-day momentum strategy where we chose the top sector by CAGR and re-balance monthly. Looking back 756 trading days or 3 years, we test all 502 different universes and select the top 10% of universes by CAGR using the momentum strategy. Now at each re-balance, we choose the top asset using 60-day momentum from each of the universes that are in the top 10%. The purpose of this strategy- lets call it momentum with universe selection- is to hopefully enhance returns and risk-adjusted returns versus using all assets in the universe. The results of this walk-forward strategy are presented below:

umass sectors

It appears that universe selection substantially enhances the performance of a basic momentum strategy. Both returns and risk-adjusted returns are improved by using rolling universe selection. There are clearly sectors that are better suited to a switching strategy than just using all of them at once. What about asset classes? Does the same effect hold true? We chose a 10-asset universe that we have used before for testing Adaptive Asset Allocation: S&P500/SPY,Real Estate/IYR,Gold/GLD,Long-Term Treasurys/TLT,Commodities/DBC,10-year Treasurys/IEF,Emerging Markets/EEM,Europe/IEV,International Real Estate/RWX,Japan/EWJ. The results of this walk-forward strategy are presented below:

umass asset class

Once again, the returns and risk-adjusted returns are much higher when employing universe selection. The differences are highly significant in this case. Clearly there are subsets of asset classes that are superior to using the entire universe.

This approach to universe selection is not without flaws however, and the reasons why will be clarified in a subsequent post. However it is still reasonably practical as long as the backtest lookback window (756 in the above example) is much larger than the momentum lookback window (60 in the above example). Furthermore, the backtest lookback window would ideally cover a market cycle–using shorter lookback windows could end up choosing only the best performers during say a bull market–which would lead to a biased universe. In addition, it would be helpful to choose a reasonable number or % of the top universes such as the top 5 or top 10 or even the top 10% in the examples we used above. That helps to mitigate the effect of data-mining too many different combinations and ending up with a universe that simply performed well due to chance. It also improves the reliability of out-of-sample performance.

About these ads

11 thoughts on “Momentum Strategies and Universe Selection

  1. Pingback: Daily Wrap for 6/3/2014 | The Whole Street

  2. Very interesting post. You never fail to contribute stimulating thought to the community of people interested in these fascinating topics.

    Maybe I’m misunderstanding what you wrote, but I’m still unclear about the methodology for your data: is it that every month between 2002-Present you perform universe selection over the trailing 768 days (where within the trailing 768 day period, for each possible universe, you you perform monthly top k absolute momentum with a 60 day (2 month) lookback period)?

    Thank you!

    • I read your article several times. I am still not quite clear about the algorithm.

      Current universe = top stocks for the past 768 days for day x
      top stock = top stock in current universe using 60 days look back period
      x = x + 1

      Thank you!!!
      Mofo

  3. Pingback: Saturday links: universe selection | Abnormal Returns

  4. Pingback: Momentum Strategies and Universe Selection | CSSA | DRBTK

  5. Hello David,
    First of all I have to thank you very much for your action to give in the web the DVI out of black box. That was my grater trading discovery till now, it gaves me a new perception on my trading way. I have form my trading strategy from three blogs and yours is the major. So now because I suppose that I have something to say and to give a different approach from my side I’m writing you. I’ll send you to my blog because the response is quite big and the WordPress has limitations to the comments. The comment it has a little relationship with that post but while that time I’m looking at the momentum to, I fund it ok to post it here.

    http://www.nor3n.eu/2014/06/comment-to-dv/

    Ps1. Sorry for my English are awful so if you don’t understand something just point it to me to explain it different.

    Ps2. If you read the post on my blog please let me know because on real it’s locked (I’m keeping scores, systems and positions), and I’ll suspend my notes for that comment.

    Thanks again and have a nice day.

  6. Pingback: Momentum Strategies and Universe Selection | Supernova Capital

  7. Pingback: What Factors Drive the Performance of Momentum Strategies? (Part 1) | CSSA

  8. Pingback: ETF Prophet | What Factors Drive tMomentum?

  9. Pingback: Universe selection for momentum trading

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s